首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   181篇
  免费   19篇
  2023年   2篇
  2022年   1篇
  2019年   4篇
  2018年   5篇
  2017年   6篇
  2016年   4篇
  2015年   12篇
  2014年   8篇
  2013年   10篇
  2012年   16篇
  2011年   15篇
  2010年   5篇
  2009年   5篇
  2008年   7篇
  2007年   13篇
  2006年   13篇
  2005年   6篇
  2004年   7篇
  2003年   5篇
  2002年   5篇
  2001年   4篇
  2000年   4篇
  1999年   4篇
  1998年   3篇
  1997年   3篇
  1996年   3篇
  1995年   3篇
  1994年   6篇
  1993年   3篇
  1992年   3篇
  1991年   5篇
  1990年   2篇
  1989年   1篇
  1988年   2篇
  1987年   2篇
  1985年   1篇
  1981年   1篇
  1975年   1篇
排序方式: 共有200条查询结果,搜索用时 15 毫秒
31.
Understanding the local and regional patterns of species distributions has been a major goal of ecological and evolutionary research. The notion that these patterns can be understood through simple quantitative rules is attractive, but while numerous scaling laws exist (e.g., metabolic, fractals), we are aware of no studies that have placed individual traits and community structure together within a genetics based scaling framework. We document the potential for a genetic basis to the scaling of ecological communities, largely based upon our long-term studies of poplars (Populus spp.). The genetic structure and diversity of these foundation species affects riparian ecosystems and determines a much larger community of dependent organisms. Three examples illustrate these ideas. First, there is a strong genetic basis to phytochemistry and tree architecture (both above- and belowground), which can affect diverse organisms and ecosystem processes. Second, empirical studies in the wild show that the local patterns of genetics based community structure scale up to western North America. At multiple spatial scales the arthropod community phenotype is related to the genetic distance among plants that these arthropods depend upon for survival. Third, we suggest that the familiar species-area curve, in which species richness is a function of area, is also a function of genetic diversity. We find that arthropod species richness is closely correlated with the genetic marker diversity and trait variance suggesting a genetic component to these curves. Finally, we discuss how genetic variation can interact with environmental variation to affect community attributes across geographic scales along with conservation implications.  相似文献   
32.
Mitogen-activated protein kinase (MAPK) cascades play important roles in disease resistance in model plant species such as Arabidopsis (Arabidopsis thaliana) and tobacco (Nicotiana tabacum). However, the importance of MAPK signaling pathways in the disease resistance of crops is still largely uninvestigated. To better understand the role of MAPK signaling pathways in disease resistance in soybean (Glycine max), 13, nine, and 10 genes encoding distinct MAPKs, MAPKKs, and MAPKKKs, respectively, were silenced using virus-induced gene silencing mediated by Bean pod mottle virus. Among the plants silenced for various MAPKs, MAPKKs, and MAPKKKs, those in which GmMAPK4 homologs (GmMPK4s) were silenced displayed strong phenotypes including stunted stature and spontaneous cell death on the leaves and stems, the characteristic hallmarks of activated defense responses. Microarray analysis showed that genes involved in defense responses, such as those in salicylic acid (SA) signaling pathways, were significantly up-regulated in GmMPK4-silenced plants, whereas genes involved in growth and development, such as those in auxin signaling pathways and in cell cycle and proliferation, were significantly down-regulated. As expected, SA and hydrogen peroxide accumulation was significantly increased in GmMPK4-silenced plants. Accordingly, GmMPK4-silenced plants were more resistant to downy mildew and Soybean mosaic virus compared with vector control plants. Using bimolecular fluorescence complementation analysis and in vitro kinase assays, we determined that GmMKK1 and GmMKK2 might function upstream of GmMPK4. Taken together, our results indicate that GmMPK4s negatively regulate SA accumulation and defense response but positively regulate plant growth and development, and their functions are conserved across plant species.  相似文献   
33.
Plant genetic determinants of arthropod community structure and diversity   总被引:15,自引:0,他引:15  
To test the hypothesis that genes have extended phenotypes on the community, we quantified how genetic differences among cottonwoods affect the diversity, abundance, and composition of the dependent arthropod community. Over two years, five major patterns were observed in both field and common-garden studies that focused on two species of cottonwoods and their naturally occurring F1 and backcross hybrids (collectively referred to as four different cross types). We did not find overall significant differences in arthropod species richness or abundance among cottonwood cross types. We found significant differences in arthropod community composition among all cross types except backcross and narrowleaf cottonwoods. Thus, even though we found similar richness among cross types, the species that composed the community were significantly different. Using vector analysis, we found that the shift in arthropod community composition was correlated with percent Fremont alleles in the host plant, which suggests that the arthropod community responds to the underlying genetic differences among trees. We found 13 arthropod species representing different trophic levels that were significant indicators of the four different cross types. Even though arthropod communities changed in species composition from one year to the next, the overall patterns of community differences remained remarkably stable, suggesting that the genetic differences among cross types exert a strong organizing influence on the arthropod community. Together, these results support the extended phenotype concept. Few studies have observationally and experimentally shown that entire arthropod communities can be structured by genetic differences in their host plants. These findings contribute to the developing field of community genetics and suggest a strategy for conserving arthropod diversity by promoting genetic diversity in their host plants.  相似文献   
34.

Background  

The bacterial biothreat agents Burkholderia mallei and Burkholderia pseudomallei are the cause of glanders and melioidosis, respectively. Genomic and epidemiological studies have shown that B. mallei is a recently emerged, host restricted clone of B. pseudomallei.  相似文献   
35.
A model artificial biofilm was developed and evaluated for ranking the performance of biocides for application in oil production pipelines. The biofilm consisted of an alginate gel matrix into which were incorporated bacteria, scrapings from the inner surfaces of oil production pipelines and some crude oil.
The viability and sulphide-respiration rates of sulphate-reducing bacteria (SRB) within freshly-prepared artificial biofilm remained largely unchanged during a 2-week storage period. Furthermore, storage of the model biofilm did not alter the susceptibility of the incorporated SRB to a biocide. These findings showed that artificial biofilm may be produced in advance of a biocide assessment study and stored for at least 2 weeks over the course of the study without the model system undergoing changes which affected the relative performance of the biocides assessed. Artificial biofilms were found to be more resistant to biocides than planktonic bacteria and the addition of oil pipeline scrapings and crude oil to the artificial biofilm was found to increase further the resistance of biofilm to biocides.  相似文献   
36.
As part of a restoration project, multiple genotypes of two tree species, Fremont cottonwood (Populus fremontii) and Goodding's willow (Salix gooddingii), and one shrub species, Coyote willow (S. exigua), were experimentally planted in different proportions at the Palo Verde Ecological Reserve near Blythe, California, U.S.A. These common woody plant species are important to the endangered southwestern willow flycatcher, providing perch, nesting, and foraging habitat. We conducted this study to evaluate plant species proportion and plant genotype effects on the arthropod community, the prey base for the endangered southwestern willow flycatcher. Three patterns emerged. First, plant species proportions were important; the arthropod community had the greatest richness and diversity (H′) when Goodding's willow proportion was high and Fremont cottonwood proportion was lower; that is, fewer Fremont cottonwoods are required to positively affect overall arthropod diversity. Second, we found significant genotypic effects, for all three plant species, on arthropod species accumulation. Third, while both planting proportion and genotype effects were significant, we found that the effect of planting proportion on arthropod richness was about twice as large as the effect of plant genotype. This shows that both plant species proportions and genotype should be utilized in restoration projects to maximize habitat heterogeneity and arthropod richness. Similar studies can determine which planting proportion and specific genotypes may result in a more favorable arthropod prey base for the southwestern willow flycatcher and other species of concern. Greater attention to planting design and genotype can result in significant gains in diversity at little or no additional project cost.  相似文献   
37.
The mammalian cellular microenvironment is shaped by soluble factors and structural components, the extracellular matrix, providing physical support, regulating adhesion and signalling. A global, quantitative mass spectrometry strategy, combined with bioinformatics data processing, was developed to assess proteome differences in the microenvironment of primary human fibroblasts. We studied secreted proteins of fibroblasts from normal and pathologically altered skin and their post‐translational modifications. The influence of collagen VII, an important structural component, which is lost in genetic skin fragility, was used as model. Loss of collagen VII had a global impact on the cellular microenvironment and was associated with proteome alterations highly relevant for disease pathogenesis including decrease in basement membrane components, increase in dermal matrix proteins, TGF‐β and metalloproteases, but not higher protease activity. The definition of the proteome of fibroblast microenvironment and its plasticity in health and disease identified novel disease mechanisms and potential targets of intervention.  相似文献   
38.
Here we propose that herbivore-induced changes in leaf litter quality can modify aboveground litterfall dynamics differentially in evergreen and deciduous trees. Because aboveground plant litterfall is an important source of nutrients in terrestrial ecosystems, any factor that alters plant litter quality can have large "afterlife" effects on the decomposition rate of that litter and the subsequent rate of nutrient release. Two contrasting patterns emerge from the literature and are corroborated by our two experimental case studies. First, in evergreens, herbivory commonly results in premature leaf abscission, improved litter "quality" and an acceleration of litter decomposition. Second, in deciduous trees, herbivory commonly results in the induction of secondary compounds that decelerates decomposition. We argue that these broad patterns reflect predictable differential responses to herbivores that can have important consequences for terrestrial nutrient cycling and productivity and that warrant more attention in the literature.  相似文献   
39.
Herbivore adaptation to plant genetic variation can lead to reproductive isolation and the formation of host-associated lineages (host-associated differentiation, or HAD). Plant genetic variation exists along a scale, ranging from variation among individual plant genotypes to variation among plant species. Along this scale, herbivores may adapt and diverge at any level, yet few studies have examined whether herbivore differentiation exhibits scaling with respect to host variation (e.g., from genotypes to species). Determining at which level(s) herbivore differentiation occurs can provide insight into the importance of plant genetic variation on herbivore evolution. Previous studies have found strong genetic differentiation in the eriophyid mite, Aceria parapopuli, between hybrid Populus hosts and parental Populus species, but minimal neutral-locus differentiation among individual trees of the same species. We tested whether genetic differentiation in A. parapopuli scales with genetic variation in its Populus hosts. Using mite ITS1 sequence data collected among host species and among host populations, two key patterns emerged. (1) We found strong differentiation of A. parapopuli among Populus species, supporting the hypothesis that plant species differences drive reproductive isolation and HAD. (2) We did not find evidence of host-driven genetic differentiation in mites at the level of plant populations, suggesting that this level of plant variation is insufficiently strong to drive differentiation at a neutral locus. In combination with previous studies, we found that HAD occurs at the higher levels of plant genetic variation, but not at lower levels, and conclude that HAD depends on the scale of plant genetic variation examined.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号